
Interchangeability
The What, When and How

Alan Hume, BSc MSc
Pickering Interfaces

April 2013

References

References to NI in this document refer to National Instrument Corporation.
MAX is an abbreviation for Measurement and Automation Explorer, an NI product.

 www.ni.com

PI refers to Pickering Interfaces Ltd

 www.pickeringtest.com

The IVI Foundation promotes and maintains the IVI driver standard (and other standards)

 www.ivifoundation.org

What is Interchangeability?

•  Interchangeability permits similar devices from
different manufacturers to be interchanged
without the need to modify application code

•  This permits the user to freely change hardware
for similar products with no implications to the
software developed on a test system

•  This concept is the central tenet of the IVI suite
of drivers, if properly used

When to use interchangeability

•  Interchangeability can be used to reduce system
down-time by allowing multiple options for
hardware

•  It can protect against hardware obsolescence

•  It can allow cheaper hardware options to be
considered

When NOT to use interchangeability

•  If the hardware does not conform to an IVI class
then interchangeability is not supported

•  Interchangeability requires the use of the class
driver, so any special features provided by any
particular vendor cannot be used. If you need
that special feature, you cannot use it via the
interchangeability features of IVI

•  Speed can be an issue. In some cases the IVI
class driver can result in slower execution of
applications

Types of IVI driver

Extract from IVI-3.1
Driver Architecture Specification

Types of IVI Driver

•  As can be seen in the diagram, there are
different types of IVI driver

•  To achieve interchangeability the driver must be
class compliant, that means it must support the
minimum set of functions defined by the IVI
Foundation specification for that hardware type

Types of IVI Driver

Reproduced from IVI-3.1 Specification

A user program may
simultaneously access the
Class-Compliant and the
Specific drivers.
However, use of the
Specific driver may
compromise
interchangeability.

IVI Swtch

•  The IviSwtchBase capability group defines the
following functions:

•  Can Connect
•  Connect
•  Disconnect
•  Disconnect All
•  Get Channel Name (IVI-C only)
•  Get Path
•  Is Debounced (IVI-C only)
•  Set Path
•  Wait For Debounce

Only those functions in red can control the state of
a switch, a very limited set of functions.

Pickering IVI-Swtch driver

•  The Pickering IVI-Swtch driver is a class
compliant specific driver. As such it supports
all the base functions, but also provides further
functions for more powerful control of Pickering
switches

•  These further functions cannot be used if
interchangeability is required.

Note: it is possible to access the specific driver via the class driver ,so providing access to
the specific features. However, if any of the alternate products does not provide an
equivalent feature, then complete interchangeability is probably impossible.

How to code for interchangeability

•  Key to interchangeability is the IVI Configuration
Store

•  This is an XML file which contains definitions for
the IVI drivers and a layer to achieve
interchangeability

•  The most common tool for interaction with the
IVI Configuration store is probably NI MAX,
however other means are possible

NI MAX and the IVI Configuration Store

The IVI section is highlighted in pink

Explaining the IVI Configuration

•  There are a couple of levels of indirection in the
store, let’s examine these to see what they allow
us to do:

•  Logical Names
•  A logical name is nothing more than a pointer to a

Driver Session.

Driver Session

The driver session contains the specific parameters to be passed
to the IVI driver ‘InitWithOptions’ function.

The driver session could be modified to refer to different
hardware with no need to modify the users application

Drivers

The drivers available
are also contained in
the IVI Configuration
Store. Driver
Sessions are
constructed around
the available drivers.

Logical Name

•  So, the key steps for interchangeability are:

•  use the Logical Name instead of a hardware address

•  the Logical Name can be modified to refer to
alternate Driver Sessions, this modification is done
in the IVI Configuration Store, the user code is
unaffected

Logical Name

•  There are other areas that need some attention
in order to achieve interchangeability
•  There is no specification for the coding of some of

the driver capabilities, different drivers may use
different nomenclamature

•  For example: NI switch cards enumerate from a
base of 0, PI cards from a base of 1
NI: x0, x1, x2, y0, y1, y2
PI: x1, x2, x3, y1, y2, y3

•  A means of dealing with these differences is
needed to achieve interchangeability

Channel Names

•  The IVI driver model treats a switch object like a
‘black boxe’. The interface to the outside work is
defined, but details of the internal operation is
hidden.

•  So, each switch is represented by its terminals and
paths created by requesting connections between
those terminals, for example:

•  IviSwtch_Connect(drv_session, “x1”, “y1”);

•  So, an IVI driver will present the user with a list of
channels that it recognises,

Logical Name

The IVI Configuration
Store provides a
system of Virtual
Names that allow users
to alias channel
names. This
overcomes
nomenclamature
differences between
cards.

This is also a useful
means to provide more
meaningful channel
names, even if
interchangeability is
not required.

Writing Code

•  A programmer may be tempted to code like this:

err = pi40iv_InitWithOptions("PXI5::15::INSTR",
 VI_FALSE, VI_FALSE,
"Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1,DriverSetup=Model:
41-182-003;", &vi);

Pi40iv_Connect(vi, “x0”, “y0”);

This offers NO interchangeability since:

a)   The hardware address is hard coded into the program
b)  The hardware model is hard coded into the program
c)   The custom driver is hard coded into the program
d)  The channel names may change on a different card

Writing Code

•  One step toward interchangeability:

err = pi40iv_init("atten_ln", 0, 0, &vi);

pi40iv_Connect(vi, “x0”, “y0”);

This offers some interchangeability since:

a)   The hardware address is no longer hard coded into the program
b)  The hardware model is no longer hard coded into the program
c)   BUT - the custom driver is hard coded into the program
d)  The channel names are still specific to the manufacturer

This would permit interchangeability of Pickering switch cards, but not interchangeability
between vendors

Writing Code

•  Full interchangeability:

err = IviSwtch_init("atten_ln", 0, 0, &vi);

IviSwtch_Connect(vi, “DUT1”, “DMM”);

This offers full interchangeability since:

a)   The hardware address is no longer hard coded into the program
b)  The hardware model is no longer hard coded into the program
c)   The custom driver is no longer hard coded into the program
d)  Virtual channel names have been used and can be differently defined

for different cards

This would permit interchangeability of between vendors

Example – the hardware

The designer has decided that either an NI PXI-2599 or a PI 40-780-522
would be suitable for this system; furthermore the PI card may be mounted
in a PXI chassis or an LXI chassis. How do we make these devices
interchangeable?

Example – the IVI Store – NI setup

Example – the IVI Store – PI setup

Example – looking from the IVI Driver

NI PI

Raw

With
Virtual Names

Example – the test program
// ivi_example.cpp : Example of IVI interchangeability

#include "stdafx.h"
#include "iviswtch.h" // Use IviSwtch Class Driver

int main(int argc, char *argv[])
{

 ViSession vi = 0;
 ViStatus error = 0;

 checkErr(IviSwtch_init("prog_sw", // initialize a session on the switch
 VI_FALSE, VI_FALSE, &vi));

 IviSwtch_DisconnectAll(vi); // make sure all switches are at default

 checkErr(IviSwtch_Connect(vi, "SGEN", "DUT1_IN")); // connect SGEN
 checkErr(IviSwtch_Connect(vi, "DUT1_OUT", "SPA")); // connect SPA

 Go_Do_A_Test("DUT1"); // Perform test on DUT1

 IviSwtch_DisconnectAll(vi); // reset all switches

 checkErr(IviSwtch_Connect(vi, "SGEN", "DUT2_IN")); // connect SGEN
 checkErr(IviSwtch_Connect(vi, "DUT2_OUT", "SPA")); // connect SPA

 Go_Do_A_Test("DUT2"); // Perform test on DUT2

 IviSwtch_DisconnectAll(vi); // reset all switches

Error:
 if (error != VI_SUCCESS) printf("Error: %08x\n", error);

 IviSwtch_close(vi); // close the session on the switch

 return EXIT_SUCCESS;

}

IviSwtch_Connect(vi, "SGEN", "DUT1_IN")

(IviSwtch_init("prog_sw",

Note use of
class driver,
logical names,
and virtual
names making
this code
interchangeable

Example – the test program

At any time the IVI
Configuration Store may
be edited to modify the
Device Driver referenced
by the Logical Name.

This permits full
interchangeability
between the 3 different
switches.

If a further switch type is
required, all that has to be
done is to create a Device
Driver for that hardware,
matching the Virtual
Names, then modify the
Logical Name to refer to
the new Driver Session.

NO CODE MODIFICATION
REQUIRED

Summary

•  ‘Under the bonnet’ the IVI system handles the
interchangeability.

•  When program calls are made, the IVI system
calls the appropriate driver with the appropriate
parameters

•  If multiple Driver Sessions are created for
different hardware solutions, then all the user
has to do is to modify the Logical Name to point
to the alternate Driver Session

Remember

•  Be sure that interchangeability will not

compromise performance or capability

•  Choose products that offer an IVI Class-
Compliant driver

•  Program using the IVI Class Driver, not vendor
provided drivers

•  Manage the differences between cards in the IVI
Configuration Store, not in the user code

